Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Zhen Ci Yan Jiu ; 49(3): 221-230, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500318

RESUMEN

OBJECTIVES: To observe the effects of electroacupuncture (EA) at "Fengfu"(GV16), "Taichong"(LR3), and "Zusanli"(ST36) on mitophagy mediated by silencing regulatory protein 3 (SIRT3)/ PTEN induced putative kinase 1 (PINK1)/PARK2 gene coding protein (Parkin) in the midbrain substantia nigra of Parkinson's disease (PD) mice, and to explore the potential mechanisms of EA in treating PD. METHODS: C57BL/6 mice were randomly divided into the control, model, EA, and sham EA groups, with 12 mice in each group. The PD mouse model was established by intraperitoneal injection of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). The EA group received EA stimulation at GV16, LR3 and ST36, while the sham EA group received shallow needling 1 mm away from the above acupoints without electrical stimulation. The motor ability of mice in each group was evaluated using an open field experiment. Immunohistochemistry was used to detect the expression of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the substantia nigra of mice. The ultrastructure of neurons in substantia nigra was observed by transmission electron microscope (TEM). Immunofluorescence was used to detect the expression of the autophagy marker autophagy-associated protein light chain 3 (LC3). The expression levels of TH, α-syn, SIRT3, PINK1, Parkin, P62, Beclin-1, LC3Ⅱ mRNA and protein were detected by PCR and Western blot. RESULTS: Compared with the control group, mice in the model group showed a decrease in the total exercise distance, time, movement speed and times of crossing central region (P<0.01);the positive expressions of TH and LC3 were decreased (P<0.01), while the positive expression of α-syn increased (P<0.01), accompanied by mitochondrial swelling, mitochondrial cristae fragmentation and decrease, and decreased lysosome count;the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1, and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were decreased (P<0.01), while the expression levels of α-syn and P62 mRNA and protein were increased (P<0.01, P<0.05). Compared with the model group, the mice in EA group showed a significant increase in the total exercise distance, time, movement speed and times of crossing central region (P<0.01, P<0.05);the positive expressions of TH and LC3 were increased (P<0.01, P<0.05), while the positive expression of α-syn was decreased (P<0.01), accompanied by an increase in mitochondrial count, appearance of autophagic va-cuoles, and a decrease in swelling, the expression levels of TH, SIRT3, PINK1, Parkin, Beclin-1 and LC3Ⅱ mRNA and protein in the midbrain substantia nigra were increased (P<0.01, P<0.05), while the mRNA and protein expression levels of α-syn and P62 were decreased (P<0.01);the sham EA group showed an increase in the total exercise distance and time(P<0.05), with an increase in the positive expression of TH (P<0.05) and a decrease in the positive expression of α-syn (P<0.05);some mitochondria exhibited swelling, and no autophagic vacuoles were observed;the protein expression levels of TH, SIRT3, Parkin and LC3Ⅱ were increased (P<0.01, P<0.05), and the expression levels of P62 mRNA, α-syn mRNA and protein were decreased (P<0.01, P<0.05), and LC3Ⅱ mRNA expression was increased (P<0.05). In comparison to the sham EA group, the EA group showed an extension in the total exercise time (P<0.01), the positive expression and mRNA expression levels of α-syn were decreased (P<0.01, P<0.05), while the expression levels of TH, SIRT3, PINK1, Parkin mRNA and SIRT3 protein were increased (P<0.05). CONCLUSIONS: EA at GV16, LR3, and ST36 can exert neuroprotective function and improve the motor ability of PD mice by activating the SIRT3/PINK1/Parkin pathway to enhance the expression of TH and reduce α-syn aggregation in the substantia nigra of PD mice.


Asunto(s)
Electroacupuntura , Enfermedad de Parkinson , Sirtuina 3 , Ratones , Animales , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Sirtuina 3/genética , Mitofagia/genética , Proteínas Quinasas/genética , Beclina-1 , Ratones Endogámicos C57BL , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , ARN Mensajero
2.
Mol Biol Rep ; 51(1): 266, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302764

RESUMEN

BACKGROUND: Rhein, which has antioxidant and anti-inflammatory response properties, is a beneficial treatment for different pathologies. However, the mechanism by which rhein protects against myocardial ischemic injury is poorly understood. METHODS AND RESULTS: To establish an acute myocardial infarction (AMI) rat model, we performed left anterior descending (LAD) ligation. Sprague‒Dawley rats were randomly divided into four groups: sham, AMI, AMI + rhein (AMI + R), and AMI + mitochondrial fission inhibitor (AMI + M). The extent of myocardial injury was evaluated by TTC staining, serum myocardial injury markers, and HE and Masson staining. Cardiac mitochondria ultrastructure was visualized by transmission electron microscopy. TUNEL assay and flow cytometry analysis were used to estimate cell apoptosis. Protein expression levels were measured by Western blotting. In vitro, the efficacy of rhein was assessed in H9c2 cells under hypoxic condition. Our results revealed that rats with AMI exhibited increased infarct size and indicators of myocardial damage, along with activation of Drp1-dependent mitochondrial fission, decreased mitophagy and increased apoptosis rates. However, pretreatment with rhein significantly reversed these effects and demonstrated similar efficacy to Mdivi-1. Furthermore, rhein pretreatment protected against myocardial ischemic injury by inhibiting mitochondrial fission, as evidenced by decreased Drp1 expression. It also enhanced mitophagy, as indicated by increased expression of Beclin1, Pink1 and Parkin, an increased LC3-II/LC3-I ratio and increased formation of autolysosomes. Additionally, rhein pretreatment mitigated apoptosis in AMI. These results were also confirmed in vitro in H9c2 cells. CONCLUSION: Our results demonstrate that rhein pretreatment exerts cardioprotective effects against myocardial ischemic injury via the Drp1/Pink1/Parkin pathway.


Asunto(s)
Antraquinonas , Dinámicas Mitocondriales , Proteínas Quinasas , Ratas , Animales , Ratas Sprague-Dawley , Proteínas Quinasas/metabolismo , Autofagia , Mitocondrias/metabolismo , Apoptosis , Ubiquitina-Proteína Ligasas/metabolismo
3.
Curr Med Sci ; 44(1): 93-101, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38393524

RESUMEN

OBJECTIVE: Keshan disease (KD) is a myocardial mitochondrial disease closely related to insufficient selenium (Se) and protein intake. PTEN induced putative kinase 1 (PINK1)/Parkin mediated mitochondrial autophagy regulates various physiological and pathological processes in the body. This study aimed to elucidate the relationship between PINK1/Parkin-regulated mitochondrial autophagy and KD-related myocardial injury. METHODS: A low Se and low protein animal model was established. One hundred Wistar rats were randomly divided into 5 groups (control group, low Se group, low protein group, low Se + low protein group, and corn from KD area group). The JC-1 method was used to detect the mitochondrial membrane potential (MMP). ELISA was used to detect serum creatine kinase MB (CK-MB), cardiac troponin I (cTnI), and mitochondrial-glutamicoxalacetic transaminase (M-GOT) levels. RT-PCR and Western blot analysis were used to detect the expression of PINK1, Parkin, sequestome 1 (P62), and microtubule-associated proteins1A/1B light chain 3B (MAP1LC3B). RESULTS: The MMP was significantly decreased and the activity of CK-MB, cTnI, and M-GOT significantly increased in each experimental group (low Se group, low protein group, low Se + low protein group and corn from KD area group) compared with the control group (P<0.05 for all). The mRNA and protein expression levels of PINK1, Parkin and MAP1LC3B were profoundly increased, and those of P62 markedly decreased in the experimental groups compared with the control group (P<0.05 for all). CONCLUSION: Low Se and low protein levels exacerbate myocardial damage in KD by affecting the PINK1/Parkin-mediated mitochondrial autophagy pathway.


Asunto(s)
Cardiomiopatías , Infecciones por Enterovirus , Proteínas Quinasas , Selenio , Ubiquitina-Proteína Ligasas , Animales , Ratas , Autofagia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ratas Wistar , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Biol Chem ; 300(3): 105759, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367666

RESUMEN

Genome-wide association studies have reported a correlation between a SNP of the RING finger E3 ubiquitin protein ligase rififylin (RFFL) and QT interval variability in humans (Newton-Cheh et al., 2009). Previously, we have shown that RFFL downregulates expression and function of the human-like ether-a-go-go-related gene potassium channel and corresponding rapidly activating delayed rectifier potassium current (IKr) in adult rabbit ventricular cardiomyocytes. Here, we report that RFFL also affects the transient outward current (Ito), but in a peculiar way. RFFL overexpression in adult rabbit ventricular cardiomyocytes significantly decreases the contribution of its fast component (Ito,f) from 35% to 21% and increases the contribution of its slow component (Ito,s) from 65% to 79%. Since Ito,f in rabbits is mainly conducted by Kv4.3, we investigated the effect of RFFL on Kv4.3 expressed in HEK293A cells. We found that RFFL overexpression reduced Kv4.3 expression and corresponding Ito,f in a RING domain-dependent manner in the presence or absence of its accessory subunit Kv channel-interacting protein 2. On the other hand, RFFL overexpression in Kv1.4-expressing HEK cells leads to an increase in both Kv1.4 expression level and Ito,s, similarly in a RING domain-dependent manner. Our physiologically detailed rabbit ventricular myocyte computational model shows that these yin and yang effects of RFFL overexpression on Ito,f, and Ito,s affect phase 1 of the action potential waveform and slightly decrease its duration in addition to suppressing IKr. Thus, RFFL modifies cardiac repolarization reserve via ubiquitination of multiple proteins that differently affect various potassium channels and cardiac action potential duration.


Asunto(s)
Miocitos Cardíacos , Canales de Potasio Shal , Ubiquitina-Proteína Ligasas , Animales , Humanos , Conejos , Potenciales de Acción/fisiología , Estudio de Asociación del Genoma Completo , Miocitos Cardíacos/metabolismo , Potasio/metabolismo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células HEK293
5.
Phytomedicine ; 126: 155434, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367424

RESUMEN

OBJECTIVE: This study investigated whether perinatal exposure to nonylphenol (NP) induces mitochondrial autophagy (i.e., mitophagy) damage in neonatal rat cardiomyocytes (NRCMs) and whether the PINK1/Parkin signaling pathway is involved in NP-induced primary cardiomyocyte injury. METHODS AND RESULTS: In vivo: Perinatal NP exposure increased apoptosis and mitochondrial damage in NRCMs. Mitochondrial swelling and autophagosome-like structures with multiple concentric membranes were observed in the 100 mg/kg NP group, with an increase in the number of autophagosomes. Disorganized fiber arrangement and elevated serum myocardial enzyme levels were observed with increasing NP dosage. Additionally, NP exposure led to increased MDA levels and decreased SOD activity and ATP levels in myocardial tissue. The mRNA expression levels of autophagy-related genes, including Beclin-1, p62, and LC3B, as well as the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, p62, LC3-I, LC3-II, and LC3-II/I) and apoptosis-related proteins (Bax and caspase-3), increased, whereas the expression levels of the mitochondrial membrane protein TOMM20 and the anti-apoptotic protein Bcl-2 decreased. In vitro: NP increased ROS levels, LDH release, and decreased ATP levels in NRCMs. CsA treatment significantly inhibited the expression of autophagy-related proteins (Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased the expression levels of TOMM20 and Bcl-2 proteins, increased cellular ATP levels, and inhibited LDH release. The inhibition of the PINK1/Parkin signaling pathway suppressed the expression of mitochondrial autophagy-related proteins (PINK1, p-Parkin, Parkin, Beclin-1, LC3-II/I, and p62) and apoptosis-related proteins (caspase-3 and Bax), increased TOMM20 and Bcl-2 protein expression, increased ATP levels, and decreased LDH levels in NRCMs. CONCLUSIONS: This study is novel in reporting that perinatal NP exposure induced myocardial injury in male neonatal rats, thereby inducing mitophagy. The PINK1/Parkin signaling pathway was involved in this injury by regulating mitophagy.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Autofagia , Fenoles , Ratas , Animales , Masculino , Caspasa 3/metabolismo , Beclina-1/metabolismo , Proteína X Asociada a bcl-2 , Autofagia/fisiología , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo , Adenosina Trifosfato
6.
J Ethnopharmacol ; 328: 117863, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38325670

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The JinChan YiShen TongLuo (JCYSTL) formula, a traditional Chinese medicine (TCM), has been used clinically for decades to treat diabetic nephropathy (DN). TCM believes that the core pathogenesis of DN is "kidney deficiency and collateral obstruction," and JCYSTL has the effect of "tonifying kidney and clearing collateral," thus alleviating the damage to kidney structure and function caused by diabetes. From the perspective of modern medicine, mitochondrial damage is an important factor in DN pathogenesis. Our study suggests that the regulation of mitophagy and mitochondrial function by JCYSTL may be one of the internal mechanisms underlying its good clinical efficacy. AIM OF THE STUDY: This study aimed to investigate the mechanisms underlying the renoprotective effects of JCYSTL. MATERIALS AND METHODS: Unilateral nephrectomy combined with low-dose streptozotocin intraperitoneally injected in a DN rat model and high glucose (HG) plus hypoxia-induced HK-2 cells were used to explore the effects of JCYSTL on the HIF-1α/mitophagy pathway, mitochondrial function and apoptosis. RESULTS: JCYSTL treatment significantly decreased albuminuria, serum creatinine, blood urea nitrogen, and uric acid levels and increased creatinine clearance levels in DN rats. In vitro, medicated serum containing JCYSTL formula increased mitochondrial membrane potential (MMP); improved activities of mitochondrial respiratory chain complexes I, III, and IV; decreased the apoptotic cell percentage and apoptotic protein Bax expression; and increased anti-apoptotic protein Bcl-2 expression in HG/hypoxia-induced HK-2 cells. The treatment group exhibited increased accumulation of PINK1, Parkin, and LC3-II and reduced P62 levels in HG/hypoxia-induced HK-2 cells, whereas in PINK1 knockdown HK-2 cells, JCYSTL did not improve the HG/hypoxia-induced changes in Parkin, LC3-II, and P62. When mitophagy was impaired by PINK1 knockdown, the inhibitory effect of JCYSTL on Bax and its promoting effect on MMP and Bcl-2 disappeared. The JCYSTL-treated group displayed significantly higher HIF-1α expression than the model group in vivo, which was comparable to the effects of FG-4592 in DN rats. PINK1 knockdown did not affect HIF-1α accumulation in JCYSTL-treated HK-2 cells exposed to HG/hypoxia. Both JCYSTL and FG-4592 ameliorated mitochondrial morphological abnormalities and reduced the mitochondrial respiratory chain complex activity in the renal tubules of DN rats. Mitochondrial apoptosis signals in DN rats, such as increased Bax and Caspase-3 expression and apoptosis ratio, were weakened by JCYSTL or FG-4592 administration. CONCLUSION: This study demonstrates that the JCYSTL formula activates PINK1/Parkin-mediated mitophagy by stabilizing HIF-1α to protect renal tubules from mitochondrial dysfunction and apoptosis in diabetic conditions, presenting a promising therapy for the treatment of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Enfermedades Mitocondriales , Ratas , Animales , Nefropatías Diabéticas/patología , Proteína X Asociada a bcl-2 , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2 , Ubiquitina-Proteína Ligasas/metabolismo , Hipoxia , Proteínas Quinasas/metabolismo
7.
Food Funct ; 15(3): 1355-1368, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38205834

RESUMEN

Dietary nutritional support for special populations is an effective and feasible method to improve the quality of life of patients and reduce medical pressure. Acer truncatum Bunge seed oil (ATSO) is widely recognized for its ability to promote nerve myelin regeneration. To evaluate the ameliorative effects of ATSO on chemotherapy-induced demyelination, a zebrafish model of chemotherapy-induced demyelination was established. The results showed that 100 µg mL-1 of ATSO reversed tail morphology damage, axon degeneration, touch response delay, ROS level upregulation and the expression of myelin basic protein decrease in chemotherapy-induced zebrafish. In addition, the expression of myelin markers (including sox10, krox20, and pmp22) in oxaliplatin-induced cells was markedly reversed by ATSO and its active components (gondoic acid, erucic acid, and nervonic acid). ATSO and its active components could reverse demyelination by ameliorating mitochondrial dysfunction. Conversely, linoleic acid and linolenic acid promoted demyelination by exacerbating mitochondrial dysfunction. Moreover, the Pink1/Parkin pathway was recognized as the main reason for ATSO and its active components improving mitochondrial function by activating mitophagy and restoring autophagic flow. Taken together, this study demonstrated that ATSO and its active components could be further developed as novel functional food ingredients to antagonize demyelination.


Asunto(s)
Acer , Antineoplásicos , Enfermedades Desmielinizantes , Enfermedades Mitocondriales , Animales , Humanos , Mitofagia , Oxaliplatino/farmacología , Pez Cebra/metabolismo , Calidad de Vida , Semillas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aceites de Plantas/farmacología , Antineoplásicos/farmacología , Proteínas Serina-Treonina Quinasas
8.
Phytomedicine ; 125: 155358, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241916

RESUMEN

BACKGROUND: Bovine mastitis is the most common animal production disease in the global dairy industry, which affects the health of dairy cows. When bovine mastitis occurs, the mitochondrial metabolism of breast tissue increases, and the relationship between inflammation and mitophagy has become a hot topic for many scholars. The abuse of antibiotics leads to the increase of resistance to bovine mastitis. FTA is one of the main effective components of Forsythia suspensa, which has anti-inflammatory, anti-infection, anti-oxidation and anti-virus pharmacological effects, and has broad application prospects in the prevention and treatment of bovine mastitis. However, the relationship between the anti-inflammatory effects of FTA and mitophagy is still unclear. PURPOSE: This study mainly explores the anti-inflammatory effect of FTA in bovine mastitis and the relationship between mitophagy. METHODS: MAC-T cells and wild-type mice were used to simulate the in vitro and in vivo response of mastitis. After the pretreatment with FTA, CsA inhibitors and siPINK1 were used to interfere with mitophagy, and the mitochondrial function impairment and the expression of inflammatory factors were detected. RESULTS: It was found that pre-treatment with FTA significantly reduced LPS induced inflammatory response and mitochondrial damage, while promoting the expression of mitophagy related factors. However, after inhibiting mitophagy, the anti-inflammatory effect of FTA was inhibited. CONCLUSION: This study is the first to suggest the relationship between the anti-inflammatory effect of FTA and mitophagy. PINK1/Parkin-mediated mitophagy is one of the ways that FTA protects MAC-T cells from LPS-induced inflammatory damage.


Asunto(s)
Glicósidos , Mastitis Bovina , Mitofagia , Bovinos , Femenino , Ratones , Animales , Humanos , Proteínas Quinasas/metabolismo , Lipopolisacáridos/farmacología , Mastitis Bovina/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Antiinflamatorios/farmacología
9.
J Ethnopharmacol ; 325: 117766, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38266949

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY: A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS: Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS: (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 µg·mL-1 and 4.72 µg·mL-1) neuronal protection being the strongest. Glycosides (4.72 µg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 µg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION: Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Fármacos Neuroprotectores , Ratas , Animales , Mitofagia , Glicósidos/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratas Sprague-Dawley , Proteínas Quinasas/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Reperfusión , Inflamación/tratamiento farmacológico
10.
J Ethnopharmacol ; 324: 117691, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38176667

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice is widely used in the treatment of ulcerative colitis (UC) and has good antioxidant and anti-inflammatory effects, but its specific active ingredients and mechanisms of action are still unknown. THE PURPOSE OF THE STUDY: To elucidate the specific molecular mechanisms of licorice in the treatment of UC and to experimentally verify its activity. METHODS: Through network pharmacology, the active ingredients of licorice and the molecular targets of UC were identified. A traditional Chinese medicine (TCM)-components-target-disease network diagram was established, and the binding energies of the active ingredient and targets of licorice were verified by molecular docking. A BALB/c mice model of UC was established by treatment with 3% dextran sulfate sodium (DSS). The effect of licorice on colon tissue injury was histologically assessed. The expression of IL-6 and IL-17 in colon tissue was detected by immunohistochemistry (IHC). Transmission electron microscopy (TEM) was used to observe morphological changes in mitochondria in the colon. Caco2 cells were treated with lipopolysaccharide (LPS) for 24 h to establish the cell inflammatory damage model, and cells were exposed to different concentrations of drug-containing serum of Licorice (DCSL) for 24 h. In cells treated with the drug, the contents of oxidation markers were measured and ELISA was used to determine the levels of inflammatory factors in the cells. TEM was used to observe morphological changes in mitochondria. ZO-1 and occludin were detected by Western blotting. DCSL effects on autophagy were evaluated by treating cells with DCSL and autophagy inhibitor for 24 h after LPS injection. Small interfering ribonucleic acid (si-RNA) was used to silence Nrf2 gene expression in Caco2 cells to observe the effects of DCSL on autophagy through the Nrf2/PINK1 pathway. Nrf2, PINK1, HO-1, Parkin, P62, and LC3 were detected by Western blotting. RESULTS: Ninety-one active ingredients and 339 action targets and 792 UC disease targets were identified, 99 of which were overlapping targets. Molecular docking was used to analyze the binding energies of liquiritin, liquiritigenin, glycyrrhizic acid, and glycyrrhetinic acid to the targets, with glycyrrhetinic acid having the strongest binding energy. In the UC mouse model, licorice improved colon histopathological changes, reduced levels of IL-6 and IL-17 and repaired mitochondrial damage. In the LPS-induced inflammation model of Caco2 cells, DCSL decreased MDA, IL-1ß, Il-6, and TNF-α levels and increased those of Superoxide Dismutase (SOD), glutathione peroxidase (GSH-PX), and IL-10, and improved the morphological changes of mitochondria. Increased expression of Nrf2, PINK1, Parkin, HO-1, ZO-1, occludin, P62, and LC3 promoted autophagy and reduced inflammation levels. CONCLUSION: Licorice improves UC, which may be related to the activation of the Nrf2/PINK1 signaling pathway that regulates autophagy.


Asunto(s)
Colitis Ulcerosa , Colitis , Ácido Glicirretínico , Glycyrrhiza , Humanos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Interleucina-17/metabolismo , Colon , Farmacología en Red , Células CACO-2 , Lipopolisacáridos/toxicidad , Factor 2 Relacionado con NF-E2/metabolismo , Interleucina-6/metabolismo , Simulación del Acoplamiento Molecular , Ocludina/metabolismo , Inflamación/patología , Ácido Glicirretínico/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colitis/tratamiento farmacológico
11.
J Ethnopharmacol ; 323: 117695, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38163556

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chaihu Shugan Powder (CHSGP) has significant clinical efficacy in the treatment of functional dyspepsia (FD), but the specific mechanism requires further study. AIM OF STUDY: The aim of this study was to investigate the therapeutic effect of CHSGP on FD rats and the underlying mechanism of the effect on interstitial cells of cajal (ICC) mitophagy. MATERIALS AND METHODS: The tail-clamping stimulation method was utilized to establish an FD rat model in vivo. Gastric emptying rate and small intestinal propulsion rate test, H&E staining, and Immunohistochemistry were conducted to evaluate the therapeutic effects of CHSGP on FD rats. In vitro, the regulatory effect of CHSGP on CCCP-mediated ICC mitophagy was further investigated by CCK8, Transmission electron microscope, immunofluorescence co-staining, Quantitative polymerase chain reaction and Western blot to reveal the potential mechanisms of CHSGP inhibited ICC mitophagy. RESULTS: Animal experiments provided evidence that CHSGP promoted gastric motility, increased ICC numbers, reduced Parkin expression, and elevated USP30 expression in FD rats. In vitro, further mechanism research demonstrated that CHSGP decreased LC3Ⅱ/LC3Ⅰ、PINK1、Parkin、PHB2 protein expression and increased USP30 protein expression. Furthermore, CHSGP increased Mfn2 protein expression by suppressing activation of the PINK1/Parkin pathway when USP30 is knocked down, consequently reducing CCCP-induced ICC mitophagy. CONCLUSIONS: These results suggest that CHSGP may treat FD against CCCP-induced ICC mitophagy by the up-regulation of via PINK1/Parkin pathway.


Asunto(s)
Dispepsia , Células Intersticiales de Cajal , Ratas , Animales , Mitofagia , Dispepsia/tratamiento farmacológico , Dispepsia/metabolismo , Células Intersticiales de Cajal/metabolismo , Polvos/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo
12.
Phytomedicine ; 124: 155323, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194842

RESUMEN

BACKGROUND: Currently, there are no specific drugs or targets available for the treatment of tendinopathy. However, inflammation has recently been found to play a pivotal role in tendinopathy progression, thereby identifying it as a potential therapeutic target. Carpaine (CA) exhibits potential anti-inflammatory pharmacological properties and may offer a therapeutic option for tendinopathy. PURPOSE: This study aimed to investigate the effectiveness of CA in addressing tendinopathy and uncovering its underlying mechanisms. METHODS: Herein, the efficacy of CA by local administration in vivo in comparison to the first-line drug indomethacin was evaluated in a mouse collagenase-induced tendinopathy (CIT) model. Furthermore, IL-1ß induced a simulated pathological inflammatory microenvironment in tenocytes to investigate its underlying mechanisms in vitro. Further confirmation experiments were performed by overexpressing or knocking down the selective targets of CA in vivo. RESULTS: The findings demonstrated that CA was dose-dependent in treating tendinopathy and that the high-dose group outperformed the first-line drug indomethacin. Mechanistically, CA selectively bound to and enhanced the activity of the E3 ubiquitin ligase LRSAM1 in tendinopathy. This effect mediated the ubiquitination of p65 at lysine 93, subsequently promoting its proteasomal degradation. As a result, the NF-κB pathway was inactivated, leading to a reduction in inflammation of tendinopathy. Consequently, CA effectively mitigated the progression of tendinopathy. Moreover, the LRSAM1 overexpression demonstrated effectiveness in mitigating the tendinopathy progression and its knockdown abolished the therapeutic effects of CA. CONCLUSION: CA attenuates the progression of tendinopathy by promoting the ubiquitin-proteasomal degradation of p65 via increasing the enzyme activity of LRSAM1. The exploration of LRSAM1 has also unveiled a new potential target for treating tendinopathy based on the ubiquitin-proteasomal pathway.


Asunto(s)
Alcaloides , Tendinopatía , Ubiquitina-Proteína Ligasas , Animales , Ratones , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Inflamación/metabolismo , Indometacina , Tendinopatía/tratamiento farmacológico
13.
Gene ; 897: 148081, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101713

RESUMEN

Azadiradione is a small bioactive limonoid found in the seed of Azadirachta Indica, an Indian medicinal plant commonly known as Neem. Recently, it has been shown to ameliorate the disease pathology in fly and mouse model of Huntington's disease by restoring impaired proteostasis. Here we report that the azadiradione could be involved in modulating the synaptic function through increased expression of Ube3a, a dual function protein having ubiquitin ligase and co-activator functions and associated with Angelman syndrome and autism. Treatment of azadiradione to HT22 hippocampal cell line and in adult mice induced the expression of Ube3a as well as two important synaptic function and plasticity regulating proteins, parvalbumin and brain-derived neurotropic factor (BDNF). Interestingly, another synaptic plasticity modulating protein Arc (activity-regulated cytoskeletal associated protein) was down-regulated by azadiradione. Partial knockdown of Ube3a in HT22 cell abrogated azadiradione induced expression of parvalbumin and BDNF. Ube3a-maternal deficient mice also exhibited significantly decreased expression of parvalbumin and BDNF in their brain and treatment of azadiradione in these animals did not rescue the altered expression of either parvalbumin or BDNF. These results indicate that azadiradione-induced expression of parvalbumin and BDNF in the brain is mediated through Ube3a and suggest that azadiradione could be implicated in restoring synaptic dysfunction in many neuropsychiatric/neurodegenerative disorders.


Asunto(s)
Síndrome de Angelman , Limoninas , Ratones , Animales , Limoninas/farmacología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Parvalbúminas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Encéfalo/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Síndrome de Angelman/patología , Modelos Animales de Enfermedad
15.
Autoimmunity ; 56(1): 2281235, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37994046

RESUMEN

Aggravated endoplasmic reticulum stress (ERS) and apoptosis in podocytes play an important role in lupus nephritis (LN) progression, but its mechanism is still unclear. Herein, the role of SMURF1 in regulating podocytes apoptosis and ERS during LN progression were investigated. MRL/lpr mice was used as LN model in vivo. HE staining was performed to analyze histopathological changes. Mouse podocytes (MPC5 cells) were treated with serum IgG from LN patients (LN-IgG) to construct LN model in vitro. CCK8 assay was adopted to determine the viability. Cell apoptosis was measured using flow cytometry and TUNEL staining. The interactions between SMURF1, YY1 and cGAS were analyzed using ChIP and/or dual-luciferase reporter gene and/or Co-IP assays. YY1 ubiquitination was analyzed by ubiquitination analysis. Our results found that SMURF1, cGAS and STING mRNA levels were markedly increased in serum samples of LN patients, while YY1 was downregulated. YY1 upregulation reduced LN-IgG-induced ERS and apoptosis in podocytes. Moreover, SMURF1 upregulation reduced YY1 protein stability and expression by ubiquitinating YY1 in podocytes. Rescue studies revealed that YY1 knockdown abrogated the inhibition of SMURF1 downregulation on LN-IgG-induced ERS and apoptosis in podocytes. It was also turned out that YY1 alleviated podocytes injury in LN by transcriptional inhibition cGAS/STING/IFN-1 signal axis. Finally, SMURF1 knockdown inhibited LN progression in vivo. In short, SMURF1 upregulation activated the cGAS/STING/IFN-1 signal axis by regulating YY1 ubiquitination to facilitate apoptosis in podocytes during LN progression.


Asunto(s)
Nefritis Lúpica , Humanos , Animales , Ratones , Nefritis Lúpica/patología , Ratones Endogámicos MRL lpr , Ubiquitinación , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Inmunoglobulina G/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
16.
Chin J Physiol ; 66(5): 351-358, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929346

RESUMEN

Aging, a crucial risk factor for ischemic heart disease, has negative impacts on cardioprotective mechanisms. As such, there is still an unmet requirement to explore potential therapies for improving the outcomes of myocardial ischemia/reperfusion (IR) injury in elderly subjects. Here, we aimed to confirm the cardioprotective function of irisin/Dendrobium nobile Lindl (DNL) combination therapy against myocardial IR injury in aged rats, with a focus on the involvement of pyroptosis and mitophagy. Male aged Wistar rats (22-24 months old, 400-450 g; n = 54) underwent myocardial IR or sham surgery. Before IR operation, rats were pretreated with irisin (0.5 mg/kg, intraperitoneally) and/or DNL (80 mg/kg, orally) for 1 or 4 weeks, respectively, at corresponding groups. Cardiac function, lactate dehydrogenase (LDH) and cardiac-specific isoform of troponin-I (cTn-I) levels, the expression of proteins involved in pyroptosis (nod-like receptor protein-3 (NLRP3), apoptosis-associated speck-like protein, c-caspase-1, and GSDMD-N) and mitophagy (PINK1 and Parkin), and pro-inflammatory cytokines levels were evaluated after 24 h of reperfusion. Irisin/DNL combined therapy significantly restored cardiac function and decreased LDH and cTn-I levels. It also downregulated pyroptosis-related proteins, upregulated PINK1 and Parkin, and decreased pro-inflammatory cytokines secretion. Pretreatment with Mdivi-1, as mitophagy inhibitor, abolished the cardioprotective action of dual therapy. This study revealed the cardioprotective effects of irisin/DNL combination therapy against IR-induced myocardial injury in aged rats, and also showed that the mechanism might be associated with suppression of NLRP3-related pyroptosis through enhancing the activity of the PINK1/Parkin mitophagy. This combination therapy is worthy of further detailed studies due to its potential to alleviate myocardial IR injury upon aging.


Asunto(s)
Dendrobium , Infarto del Miocardio , Preparaciones de Plantas , Daño por Reperfusión , Animales , Masculino , Ratas , Envejecimiento , Citocinas , Dendrobium/química , Fibronectinas , Mitofagia , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas NLR , Proteínas Quinasas , Piroptosis , Ratas Wistar , Daño por Reperfusión/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Preparaciones de Plantas/farmacología
17.
Phytomedicine ; 121: 155104, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37797433

RESUMEN

BACKGROUND: Damaged mitophagy and impaired angiogenesis involve in the pathogenic development of ischemic stroke. Active fraction of Polyrhachis vicina (Roger) (AFPR) showed great potential on neurological disease with it's remarkable anti-inflammatory and anti-oxidative effects. PURPOSE: This study designed to clarify the correlation between Pink1/Parkin-mediated mitophagy and angiogenesis after stroke, and to elucidate the role of SIRT3 in regulating mitophagy and angiogenesis, and to address the mechanism of AFPR on promoting mitophagy and angiogenesis in microvessels endothelium of ischemic brain. STUDY DESIGN: A cerebral ischemia/reperfusion (CIR) rat model was developed by middle cerebral artery occlusion procedure. bEnd.3 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic CIR process. Neurological function, mitophagy and angiogenesis related indicators were measured. SIRT3 siRNA and 3-MA were used to verify the interaction between SIRT3-mediated mitophagy and angiogenesis. METHODS: CIR rats were orally treated with AFPR (8 and 4 g raw drug /kg) and Nimodipine (10.8 mg/kg) for 12 days to mimic the recovery phase post-stroke. The neurological function assessment, TTC staining, HE staining, TUNEL staining and Nissl staining were performed to assess neuroprotective effects of AFPR against CIR. Then CD31-labeled microvessel density in brain was visualized and quantified by immunofluorescence staining. Mitochondrial ultrastructure was assessed by transmission electron microscope scanning. Expressions of relative proteins,e.g. SIRT3, Pink1, Parkin, LC3-II, p62, VEGFA, involving in mitophagy and angiogenesis, were detected by Western blotting analysis. In vitro, bEnd.3 cells were cultured with AFPR or in combination of autophagy inhibitor 3-MA during the reoxygenation. Then cell viability, and LDH releasing were measured. Angiogenic indicators,such as migration and tube formation activity, VEGFA level were determined. To assess effects of AFPR on mitophagy, mitophagy-related proteins were detected, as well as the autophagosome engulfment and lysosome degradation of mitochondria. To address the role of SIRT3, deacetylation activity of SIRT3 was validated by detecting acetylated FOXO3A level with co-immunoprecipitation (Co-IP) assay. Pre-treatment of siRNA or combination use of 3-MA were used to verify the detailed mechanism. RESULTS: AFPR remarkably reduced neurological scores and infarct size, alleviated neuron apoptosis in cortex, and increased Nissl density in hippocampus of CIR rats. In addition, AFPR significantly promoted angiogenesis by increasing microvessels density and VEGFA expressions, increased SIRT3 expression, and activated Pink1/Parkin mediated mitophagy. In bEnd.3 cells, the combination use of 3-MA and AFPR further demonstrated that AFPR might promote angiogenesis after OGD/R injury through activating Pink1/Parkin mediated mitophagy. Co-IP assay suggested AFPR reduced acetylated FOXO3A level. This might be correlated with an elevation of SIRT3 expression and it's deacetylation activity. SIRT3 siRNA pretreatment significantly abolished the activation of mitophagy through Pink1/Parkin axis, eventually inhibited angiogenesis. CONCLUSION: AFPR promoted angiogenesis through activating mitophagy after cerebral ischemia reperfusion, which might partially involved in the amelioration of SIRT3-mediated regulation on Pink1/Parkin axis. Our study will shed new light on the role of SIRT3 in ischemic brain, especially in regulating mitophagy and angiogenesis after stroke.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Sirtuina 3 , Ratas , Ratones , Animales , Mitofagia , Ratas Sprague-Dawley , Células Endoteliales/metabolismo , Isquemia Encefálica/patología , Daño por Reperfusión/metabolismo , Oxígeno , Ubiquitina-Proteína Ligasas/metabolismo , Infarto Cerebral , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/farmacología
18.
Phytomedicine ; 119: 154955, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37572567

RESUMEN

BACKGROUND: The Chinese herbal compound Xinmaikang (XMK) is effective in treating atherosclerosis (AS), although the associated mechanisms of action remain unclear. We hypothesize that XMK increases mitophagy via the PINK1/Parkin signaling pathway and decreases reactive oxygen species (ROS), thus treating AS. PURPOSE: To explore the above-mentioned mechanisms of action of XMK in AS. MATERIALS AND METHODS: Ultra-performance liquid chromatography assay was performed to clarify the composition of XMK. A 16-week high-fat diet was fed to APOE-/- mice to form an AS model. Next, mice were given XMK(0.95 g/kg/d, 1.99 g/kg/d, 3.98 g/kg/d, i.g.) or Atorvastatin(3 mg/kg/d, i.g.) or Rapamycin(4 mg/kg/d, i.p.) or XMK with Mdivi-1(40 mg/kg/d, i.p.) or an equivalent amount of normal saline for 4 weeks. Then mice were examined for AS plaque area, lesion area, collagen fiber, pro-inflammatory cytokines, lipid level, ROS level and mitophagy level. We assessed AS using Oil Red O, hematoxylin and eosin, and Sirius red staining, as well as ROS measurements. Mitophagy was evaluated by transmission electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, single-cell Western blot, and immunofluorescence staining. In vitro, by oxidizing low-density lipoprotein, formation of RAW264.7 macrophage-derived foam cells induced. we induced foam cell formation in RAW264.7 macrophages. Then cells were incubated with XMK-medicated serum with or without Mdivi-1. We examined foam cell formation, ROS level, mitophagy level in cells. Finally, we knocked down the PINK1, and examined foam cell formation and PINK1/Parkin level in RAW264.7 macrophages. RESULTS: UPLC analysis revealed 102 main ingredients in XMK. In vivo, XMK at medium-dose or high-dose significantly reduced AS plaques, lipids, pro-inflammatory cytokines, and ROS and increased mitophagy. In further study, Single-cell western blot showed that mitophagy level in macrophages sorted from AS mice was lower than the control mice. While XMK improved mitophagy level. In vitro, XMK reduced foam cell formation and ROS and increased mitophagy. When PINK1 was knocked down, XMK's effects on foam cell formation and PINK1/Parkin pathway activation were reduced. CONCLUSION: The study shows that XMK is effective against AS by mediating macrophage mitophagy via the PINK1/Parkin signaling pathway. For the treatment of AS and drug discovery, it provides an experimental basis and target.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Mitofagia , Proteínas Quinasas/metabolismo , Mitocondrias , Especies Reactivas de Oxígeno/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Placa Aterosclerótica/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Citocinas/metabolismo
19.
BMC Cancer ; 23(1): 717, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528345

RESUMEN

BACKGROUND: The treatment of non-small cell lung cancer (NSCLC) is challenging due to immune tolerance and evasion. Salidroside (SAL) is an extract in traditional Chinese medicine and has a potential antitumor effect. However, the mechanism of SAL in regulating the immunological microenvironment of NSCLC is yet to be clarified. METHODS: The mouse model with Lewis lung cancer cell line (3LL) in C57BL/6 mice was established. And then, the percentage of tumor-infiltrating T cell subsets including Treg was detected in tumor-bearing mice with or without SAL treatment. In vitro, the effect of SAL on the expression of IL-10, Foxp3 and Stub1 and the function of Treg were detected by flow cytometry. Network pharmacology prediction and molecular docking software were used to predict the target of SAL and intermolecular interaction. Furthermore, the effect of SAL on the expression of Hsp70 and the co-localization of Stub1-Foxp3 in Treg was confirmed by flow cytometry and confocal laser microscopy. Finally, Hsp70 inhibitor was used to verify the above molecular expression. RESULTS: We discovered that SAL treatment inhibits the growth of tumor cells by decreasing the percentage of tumor-infiltrated CD4+Foxp3+T cells. SAL treatment downregulates the expression of Foxp3 in Tregs, but increases the expression of Stub1, an E3 ubiquitination ligase upstream of Foxp3, and the expression of Hsp70. Inhibiting the expression of Hsp70 reverses the inhibition of SAL on Foxp3 and disrupts the colocalization of Stub1 and Foxp3 in the nucleus of Tregs. CONCLUSIONS: SAL inhibits tumor growth by regulating the Hsp70/stub1/Foxp3 pathway in Treg to suppress the function of Treg. It is a new mechanism of SAL for antitumor therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Linfocitos T Reguladores , Microambiente Tumoral , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos C57BL , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción Forkhead/metabolismo
20.
Biomed Pharmacother ; 165: 115195, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37516015

RESUMEN

BACKGROUND AND PURPOSE: Research has revealed the involvement of mitochondrial autophagy and iron death in the pathogenesis of myocardial fibrosis. The objective of this study is to investigate whether the mitochondrial-targeted H2S donor AP39 inhibits mitochondrial autophagy and antagonizes myocardial cell iron death through the PINK1/Parkin pathway, thereby improving myocardial fibrosis in rats with myocardial infarction. EXPERIMENTAL APPROACH: A rat model of myocardial infarction was created by intraperitoneal injection of a high dose of isoproterenol, and H9c2 myocardial cells were subjected to hypoxic injury induced by CoCl2. Western blot, RT-PCR, transmission electron microscopy, immunohistochemistry, as well as echocardiography, and studies on isolated hearts were employed. KEY RESULTS: In the hearts of rats with myocardial infarction, there was a significant accumulation of interstitial collagen fibers, accompanied by downregulation of CSE protein expression, activation of the PINK1/Parkin signaling pathway, and activation of mitochondrial autophagy. Intervention with AP39 resulted in a significant improvement of the aforementioned changes, which could be reversed by the addition of PAG. Similar results were observed in vitro experiments. Furthermore, the addition of CCCP reversed the antagonistic effect of AP39 on myocardial cell iron death, while the addition of RSL3 reversed the inhibitory effect of AP39 on collagen production in myocardial cells. CONCLUSION AND IMPLICATIONS: The mitochondrial-targeted H2S donor AP39 can inhibit mitochondrial autophagy through the PINK1/Parkin pathway, antagonize myocardial cell iron death, and improve myocardial fibrosis in rats with myocardial infarction.


Asunto(s)
Ferroptosis , Infarto del Miocardio , Ratas , Animales , Autofagia , Ubiquitina-Proteína Ligasas/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Fibrosis , Proteínas Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA